Search results for "Stochastic analysi"
showing 10 items of 34 documents
Filter approach to the stochastic analysis of MDOF wind-excited structures
1999
Abstract In this paper, an approach useful for stochastic analysis of the Gaussian and non-Gaussian behavior of the response of multi-degree-of-freedom (MDOF) wind-excited structures is presented. This approach is based on a particular model of the multivariate stochastic wind field based upon a particular diagonalization of the power spectral density (PSD) matrix of the fluctuating part of wind velocity. This diagonalization is performed in the space of eigenvectors and eigenvalues that are called here wind-eigenvalues and wind-eigenvectors, respectively. From the examination of these quantities it can be recognized that the wind-eigenvectors change slowly with frequency while the first wi…
Dynamics of two competing species in the presence of Lévy noise sources
2010
We consider a Lotka-Volterra system of two competing species subject to multiplicative alpha-stable Lévy noise. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence both of a periodic driving term and an additive alpha-stable Lévy noise. We study the species dynamics, which is characterized by two different regimes, exclusion of one species and coexistence of both. We find quasi-periodic oscillations and stochastic resonance phenomenon in the dynamics of the competing species, analysing the role of the Lévy noise sources.
Stochastic analysis of dynamical systems with delayed control forces
2006
Abstract Reduction of structural vibration in actively controlled dynamical system is usually performed by means of convenient control forces dependent of the dynamic response. In this paper the existent studies will be extended to dynamical systems subjected to non-normal delta-correlated random process with delayed control forces. Taylor series expansion of the control forces has been introduced and the statistics of the dynamical response have been obtained by means of the extended Ito differential rule. Numerical application provided shows the capabilities of the proposed method to analyze stochastic dynamic systems with delayed actions under delta-correlated process contrasting statist…
Switching times in long-overlap Josephson junctions subject to thermal fluctuations and non-Gaussian noise sources
2014
We investigate the superconducting lifetime of long current-biased Josephson junctions, in the presence of Gaussian and non-Gaussian noise sources. In particular, we analyze the dynamics of a Josephson junction as a function of the noise signal intensity, for different values of the parameters of the system and external driving currents. We find that the mean lifetime of the superconductive state is characterized by nonmonotonic behavior as a function of noise intensity, driving frequency and junction length. We observe that these nonmonotonic behaviours are connected with the dynamics of the junction phase string during the switching towards the resistive state. An important role is played…
Gaussian and non-Gaussian stochastic sensitivity analysis of discrete structural systems
2000
Abstract The derivatives of the response of a structural system with respect to the system parameters are termed sensitivities. They play an important role in assessing the effect of uncertainties in the mathematical model of the system and in predicting changes of the response due to changes of the design parameters. In this paper, a time domain approach for evaluating the sensitivity of discrete structural systems to deterministic, as well as to Gaussian or non-Gaussian stochastic input is presented. In particular, in the latter case, the stochastic input has been assumed to be a delta-correlated process and, by using Kronecker algebra extensively, cumulant sensitivities of order higher t…
A novel frequency domain method for predicting fatigue crack growth under wide band random loading
2007
This work deals with the evaluation of the fatigue crack growth rate of structural components subjected to uniaxial Gaussian stationary wide band random loading. In detail, a new frequency domain method that allows the user to estimate the expected crack growth rate directly from the PSD data is proposed. Using a stochastic mean function properly, introduced and described by simple closed form relationships implemented by systematic numerical simulations of a high number of wide band random processes, the proposed method permits to avoid the onerous time domain simulations and provides in general crack growth rate predictions in a good accordance with the so-called time domain method. Pract…
A stochastic approach for self-healing capability evaluation in active islanded AC/DC hybrid microgrids
2023
This paper aims to implement a resilience assessment in AC/DC hybrid microgrids using a stochastic simulation approach. Self-healing measures including load shedding, control of distributed generation and flexible devices, like Energy Storage Systems (ESS) and Electrical Vehicles (EVs), are simulated to enable AC/DC hybrid microgrids to supply critical loads in islanded mode, assuming a disconnection of these microgrids from the main AC grid due to a fault. To perform this analysis, a two-stage process is proposed: first, a Monte-Carlo simulation-based stochastic approach is adopted to generate samples to simulate intermittent loads, power generation from Renewable Energy Sources (RESs), an…
Stability in a System subject to Noise with Regulated Periodicity
2011
The stability of a simple dynamical system subject to multiplicative one-side pulse noise with hidden periodicity is investigated both analytically and numerically. The stability analysis is based on the exact result for the characteristic functional of the renewal pulse process. The influence of the memory effects on the stability condition is analyzed for two cases: (i) the dead-time-distorted poissonian process, and (ii) the renewal process with Pareto distribution. We show that, for fixed noise intensity, the system can be stable when the noise is characterized by high periodicity and unstable at low periodicity.
Two competing species in super-diffusive dynamical regimes
2010
The dynamics of two competing species within the framework of the generalized Lotka-Volterra equations, in the presence of multiplicative alpha-stable Lévy noise sources and a random time dependent interaction parameter, is studied. The species dynamics is characterized by two different dynamical regimes, exclusion of one species and coexistence of both, depending on the values of the interaction parameter, which obeys a Langevin equation with a periodically fluctuating bistable potential and an additive alpha-stable Lévy noise. The stochastic resonance phenomenon is analyzed for noise sources asymmetrically distributed. Finally, the effects of statistical dependence between multiplicative …
Noise enhanced stability in fluctuating metastable states Phys. Rev. E69, 061103 (2004)
2004
We derive general equations for the nonlinear relaxation time of Brownian diffusion in randomly switching potential with a sink. For piece-wise linear dichotomously fluctuating potential with metastable state, we obtain the exact average lifetime as a function of the potential parameters and the noise intensity. Our result is valid for arbitrary white noise intensity and for arbitrary fluctuation rate of the potential. We find noise enhanced stability phenomenon in the system investigated: The average lifetime of the metastable state is greater than the time obtained in the absence of additive white noise.We obtain the parameter region of the fluctuating potential where the effect can be ob…